
766 Midterm Report

John Balis, Yisen Wang, Milica Cvetkovic

March 2021

1 Introduction
We are interested in determining how augmenting input features using values derived from SLAM affects the
performance of standard reinforcement learning approaches in simulated 3d environments. To perform this
evaluation, we will be using gym-miniworld as our primary simulation environment. This is a minimalist 3d
reinforcement learning environment with navigation based reward.
Our current progress has strictly followed the milestones proposed in our proposal. We will demonstrate
them in two subtasks, DQN and SLAM.

2 DQN test

Figure 1: Average episode reward over 200000 timesteps

In order to evaluate how SLAM affects the performance of common reinforcement learning algorithms in 3D
environments, we need to establish a baseline performance of reinforcement learning without using SLAM
for feature extraction. To provide this baseline, we showcase how average reward changes across many
episodes while training a convolutional deep Q network on a hallway navigation task. We use the default
convolutional neural network implementation for DQN provided by stable-baselines. This architecture is
similar to, and likely inspired by, the architecture used in [3], and consists of a basic convolutional neural
network with rectified linear activation functions followed by at least one fully connected layer.

1



3 SLAM

3.1 SLAM theory
We primarily went through two papers, ”LSD-SLAM”[1] and ”Orb-SLAM2”[2], which are representatives
of direct SLAM and indirect SLAM respectively, to catch the core ideas of SLAM. We also read a classic
monocular SLAM paper ”MonoSLAM”[4] carefully to dive into the details about how each part works, such
as the depth estimation, Kalman Filter Update, feature initialization and map management. Such material
gave us a great opportunity to reflect on what we have learned in class and how they come into play in
real-world applications.

3.2 Orb-SLAM2 in miniworld
As we discussed in the proposal, gym-miniworld is our simulation environment for testing Q-learning with
the help of SLAM. We have incorporated real-time SLAM library implemented in [3] into gym-miniworld
by feeding 600x800 observation image into its framework at each step. During the first few steps, SLAM
is initializing the map and only uncertainty of the feature depth are shown on the screen. After SLAM took
enough data to restore the position and viewpoint of features, corners,bricks and other features are labeled
correctly on screen, and the algorithm starts to output localization and mapping results. Fig 2 demonstrate
the moving trajectory of SLAM inside a hallway with box.

Figure 2: SLAM in miniworld

Ongoing tasks include parameter tuning and testing in a bigger maze. In our testing, we noticed that it

2



takes longer time to initialize SLAM features in miniworld than in the KITTI benchmark test. The reason
could be the discrepancy in the richness of texture between simulated and real-world environments: when in
simple simulated environments, the environmental geometry may be patterned with repetitive and in some
cases low-contrast textures, which may make it more difficult for the SLAM algorithm to locate and track
features.
It’s worth mentioning that everyone in this group encountered great difficulties in setting up and installing
the system. In fact, we spend average 8+ hours in installing Orb-SLAM2 and python bindings on Ubuntu
16.04, 18.04, 20.04, Mac OS. It turns out only Ubuntu 16.04 and 18.04 works well. A lot of bugs need to be
addressed. We actually had to modify the source-code of Orb-SLAM2 to get it to work on Ubuntu-18.04

4 Remaining Roadmap
Following our original project timeline, our remaining goals are to design an input encoding for SLAM fea-
tures into DQN, to contrast the performance of DQN on miniworld to DQN with SLAM on miniworld, and
to complete the project writeup and presentation. We are planning to complete these goals by their original
deadlines listed in the project proposal. Additionally, we remain interested in using the Minecraft-inspired
reinforcement learning environments from the mine-rl project and applying the findings from our project to
solve Minecraft.

5 Website
https://cmilica.github.io/cs766project/

References
[1] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct Monocular SLAM,” Computer

Vision – ECCV 2014 Lecture Notes in Computer Science, pp. 834–849, 2014.

[2] Mur-Artal, Raul, and Juan D. Tardos. “ORB-SLAM2: An Open-Source SLAM System for Monocu-
lar, Stereo and RGB-D Cameras.” IEEE Transactions on Robotics, vol. 33, no. 5, 2017, pp. 1255–62,
doi:10.1109/TRO.2017.2705103.

[3] Mnih, Volodymyr, et al. “Human-Level Control through Deep Reinforcement Learning.” Nature, vol.
518, no. 7540, Feb. 2015, pp. 529–33, doi:10.1038/nature14236.

[4] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-Time Single Camera
SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067,
2007.

[5] Carlos Campos, Richard Elvira, Juan J. Gómez Rodrı́guez, José M. M. Montiel and Juan D. Tardós,
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM,
Under review.

3

https://minerl.io/

	Introduction
	DQN test
	SLAM
	SLAM theory
	Orb-SLAM2 in miniworld

	Remaining Roadmap
	Website

